_Monte Carlo PMT Simulation

This example follows notes posted online which you can find at the following
url: http://superk.physics.sunysb.edu/~mcgrew/phy310/lectures/phy310-
lecture-06-2007.pdf

Created using Maple 14.01
| Jake Bobowski

> restart,;
with(stats) :
with(plots) :
with(Statistics) :
with(StringTools) :
FormatTime ("%m—%d—%Y, %H:%M");
"03-24-2013, 23:39" 1)

In all Monte Carlo simulations it is necessary to generate random or pseudo-random numbers. The
following statement will generate a random number drawn from a uniform distribution between 0 and
1.
> X = x—stats[random, uniform[0, 1]](1) :
X();
0.3957188605 ?2)

First, suppose N photons hit the photocathode. Determine the number of photoelectrons that are
generated. Assume that the incoming light is 400 nm and that the quantum efficiency of the
photocathode is 0.23. (Following http://superk.physics.sunysb.edu/~mcgrew/phy310/lectures/phy310-
|_lecture-06-2007.pdf)

> N :=2363:
QE:=0.23:
pe :=0:

for i from 1 to N do:
if X() < QF then:
pe :=pe+1:
end if:
end do:
pe;
537 Q)

When an electron with energy £ hits a Dynode the average number of secondary electrons liberated is
oF (i.e. number of secondary electrons is proportional to the energy of the incoming electron). Since
we are counting electrons, the distribution of liberated electrons follows the Poisson distribution. As an
| example, below we generate random integers drawn from a Poisson parent distribtuion with mean 2000.

| > Y := y—stats| random, poisson[u]](1) :
> w:=2000:

Y();
Ydist :== NULL :

for i from 1 to 1000 do:
Ydist := Ydist, Y() :

end do:
Ydist == [Ydist]:
Mean(Ydist);

(StandardDeviation (Ydist)) 2;

Histogram (Y dist, frequencyscale = absolute, axes = boxed, view = [1800 .. 2200, 0 .. 100],
labels = [typeset("y"), typeset("frequnecy") |, labeldirections = ["horizontal", "vertical"],
symbol = circle, symbolsize =20, thickness =2, tickmarks = [8, 8], colour = blue , axesfont

= [Times, 12], labelfont = [Times, 14, axis = [gridlines = [thickness=21]);

2060
1999.589000
1968.90898798799

100

807

> 607
QO
<
=
o
o

S 40_

20

04

1850 1900 1950 2000 2050 2100 2150 2200
y

A photomultiplier tube (PMT) consists of a photocathode followed by a series of dynodes maintained a
different electric potentials and then finally an anode. When a single photon is incident on the
photocathode it either produces a photoelectron or it doesn't. The probability that it produces a
photoelectron is determined by the quantum efficiency OF of the photocathode. For this exercise we
will assume that OF = 0.23. If a photoelectron is produced, it is accelerated towards the first dynode by
means of a potential difference. We assume that all electrons, whether produced at the photocathode or

one of the dynodes, start with zero kinetic energy. Therefore, the energy an clectron gains is simply its
charge times the potential difference between its starting and final positions. When an electron collides
with a dynode, secondary electrons are produced. The average number of secondary electrons
produced is proportional to the energy of the incoming electron. In this problem, we assume that an
electron accelerated through 20 V will, on average, produce one secondary electron upon colliding with
the dynode. Because we are "counting" electrons, the distribution of secondary electrons generated will
follow a Poisson distribution. Note that the red text are comments and are not part of the Maple inputs.
| Comments are started using #.

> QF := 0.23 : # Set the quantum effieicency of the photocathode #
maxi = 10e3 : # Set the number of Monte Carlo iterations #
dynode := [0, 150, 300, 450, 600, 750, 850] : # Set the number of dynodes and their voltages #
dist == NULL :
The dist list will keep track of how many electrons where detected at the PMT anode for
trials in which there was at least on photoelectron generated at the photocathode #
FormatTime ("%M:%S");
Print the time (minutes and seconds) that the simulation was started
for i from 1 to maxi do:
This loop runs the Monte Carlo simulation maxi times (10,000 in this case)
if X() < QFEthen:
Generate a rondom number between [0,1]. Compare X() to the photocathode quantum
efficiency #
electrons == 1 :# If true, then a photoelectron is produced. #
for j from 1 to nops(dynode) — 1 do:
This loop will examine the secondary electrons produced at each of the dynodes
dynode| j + 1]- dynode[j]
20 ’
Mean no. of electrons generated at a dynode determined from the no. of incoming
electrons and the energy of the incoming electrons. One electron accelerated through 20V
will on average produce one electron #
electrons := electrons + Y ();
The number of electrons leaving the dynode equal to the no. of incomming electrons plus
the number generated determined by the Poisson distributed random number #
end do: # end the dynode loop #
dist = dist, electrons :
Add the total number of electrons detected at the anode for this trial to the dist list
end if: # end if #
end do: # end the 1 to maxi loop #
FormatTime ("%M:%S");
Print the time (minutes and seconds) that the simulation completed
dist == [dist] :
build the final dist list -- just putting square brackets around all of the numbers
evalf(nops(d‘ist));
maxi
Determines what fraction of the maxi trials actually produced electrons at the PMT
anode #
Mean(dist); # Calculate the mean of the distribution #
Histogram (dist, frequencyscale = absolute, axes = boxed, view = [0 .. 2e6, 0 .. 500], labels
= [typeset("electrons"), typeset("distribution")], labeldirections = ["horizontal",
"vertical"], symbol = circle, symbolsize = 20, thickness = 2, tickmarks = [8, 8], colour
=blue , axesfont= [Times, 12], labelfont = [Times, 14], axis = [gridlines = [thickness
=211);

W := electrons-

Plot a histogram of the distribution of the number of electrons collected at the anode
binData = TallyInto(dist, [0 ..2e6], bins =100) :

Use Talleylnto to build customized bins from the dist list
counts = [seq(rhs(binData[il),i=1..nops(binData))]:

Extract the bin counts generated by Tallylnto
centres == [seq(le4 +2e4-i,i=0..nops(binData) — 1)]: # Make a list of the bin centres #
logplot (centres, counts, view=[0..2e6, 0.5 ..500], style = point, axes = boxed, labels

= [typeset("electrons"), typeset("distribution") |, labeldirections = ["horizontal",

"vertical"], symbol = circle, symbolsize = 15, thickness = 2, tickmarks = [8, 8], colour

= blue , axesfont= [Times, 12, labelfont = [Times, 14], axis = [gridlines = [thickness

=21]); # Make a semi-log plot of the distribution histogram #

"39:49"

"48:04"
0.2297000000

2.668587575 10°

500

400

distribution
(U]
(@)
<

[\®)
S
<

100

O_I 1 1 1 1 1 1
0 5.x10°0 1.x10° 15x10°
electrons

2. % 10°

500

100+

507

distribution

0.54 : :
0 5.% 10°

| | |
1.x10° 15%x10° 2.x10°

electrons

This next block of code is very similar to the previous. This time, however, we imagine that there are 8
photons incident on the photocathode instead of one. Now there can be 0, 1, 2, ..., or 8 photoelectrons
generated and then accelerated towards the first dynode. How does the distribution of electrons
arriving at the anode change? We only require a relatively minor change to the code to study this
problem. Plot the histograms using the same scale and the same binwidths to make comparisons with
| the previous results easy.
> QF:=0.23: # Set the quantum effieicency of the photocathode #

maxi = 10e3 : # Set the number of Monte Carlo iterations #
dynode = [0, 150, 300, 450, 600, 750, 8501 : # Set the number of dynodes and their voltages #
dist == NULL :

The dist list will keep track of how many electrons where detected at the PMT anode for

trials in which there was at least on photoelectron generated at the photocathode #
numPhotons = 8 : # Set the number of photons incident on the photocathode #
FormatTime ("%M:%S");

Print the time (minutes and seconds) that the simulation was started
for i from 1 to maxi do:

This loop runs the Monte Carlo simulation maxi times (10,000 in this case)

pe =0:
Set the initial number of photoelectrons generated at the photocathode to be zero
for k from 1 to numPhotons do:

This loop individually steps through each of the photons incident on the photocathode
if X() < QF then:
Generate a rondom number between [0,1]. Compare X() to the photocathode quantum
efficiency #
pe = pe + 1 : # If true, then a photoelectron is produced. Increment pe by 1 #
end if : # end if #
end do: # end the incoming photon loop #
if pe > 0 then:
If tbere are photoelectrons, then do something. If there are no photoelectrons then do
nothing #
electrons := pe :
Set the initial number of electrons in the PMT to be equal to the number of photoelectrons
generated at the photocathode #
for j from 1 to nops(dynode) — 1 do:
This loop will examine the secondary electrons produced at each of the dynodes
dynode| j + 1]- dynode[j]
20 '
Mean no. of electrons generated at a dynode determined from the no. of incoming
electrons and the energy of the incoming electrons. One electron accelerated through 20V
will on average produce one electron #
electrons := electrons + Y();
The number of electrons leaving the dynode equal to the no. of incomming electrons plus
the number generated determined by the Poisson distributed random number #
end do: # end the dynode loop #
dist = dist, electrons :
Add the total number of electrons detected at the anode for this trial to the dist list
end if: # end if #
end do: # end the 1 to maxi loop #
FormatTime ("%M:%S");
Print the time (minutes and seconds) that the simulation completed
dist == [dist] :
build the final dist list -- just putting square brackets around all of the numbers

evalf(nops(dist)) :

W := electrons-

maxi
Determines what fraction of the maxi trials actually produced electrons at the PMT
anode #
Mean(dist); # Calculate the mean of the distribution #
Histogram (dist, frequencyscale = absolute, binwidth = 2e4, axes = boxed, view=[0..2¢6, 0
..5001, labels = [typeset("electrons"), typeset("distribution") |, labeldirections
= ["horizontal", "vertical"], symbol = circle, symbolsize =20, thickness = 2, tickmarks
=[8, 8], colour =blue , axesfont= [Times, 12, labelfont = [Times, 14], axis = [gridlines
= [thickness=21]);
Plot a histogram of the distribution of the number of electrons collected at the anode
binData = TallyInto(dist, [0 ..2e6], bins =100) :
Use Talleylnto to build customized bins from the dist list
counts = [seq(rhs(binData[i]), i=1..nops(binData))]:
Extract the bin counts generated by Tallylnto
centres == [seq(le4 +2e4-i,i=0..nops(binData) — 1)]: # Make a list of the bin centres #
logplot (centres, counts, view=[0..2e6, 0.5 ..500], style = point, axes = boxed, labels
= [typeset("electrons"), typeset("distribution")], labeldirections = ["horizontal",
"vertical"], symbol = circle, symbolsize = 15, thickness = 2, tickmarks = [8, 8], colour

= blue , axesfont= [Times, 12, labelfont = [Times, 14], axis = [gridlines = [thickness
=211); # Make a semi-log plot of the distribution histogram #

"48:04"
"35:27"
0.8706000000

5.573354118 10°

500

400+

300

distribution

2007

100

O_I I I I I I I
0 5.x10° 1.x10° 15x10°
electrons

2.x](ﬁ

5007
&;E?a ;
’ m
1004—= C%&ﬁ
504— P
= © By
.g o ‘373::'
:5 o o {:.':'
L
‘é 10+ Gi?{:
o Q o 00
(T
5 o0
i
(=)]
o0
14& O OO0
0-5_| T T T T T T T T
0 5.x100 1.x10° 15x10° 2.x10°
electrons

Finally, this last block of code runs the same PMT simulation above four times, each time using a
different number of incoming photons [1, 2, 4, 8]. I put a restart at the beginning of the block only to
emphasize that this chunk of code doesn't rely on anything that came before it. These 44 lines of code
will simulate the expected distributions of anode electrons for 4 difference sets of incoming photons.
There real virtue of the Monte Carlo simulation is that we can now vary properties of the PMT with
trivial modifications to the code below and systematically study the effects. For example, what if there
were mode dynodes? All we have to do is modify the line dynode:=[0,150,300,450,600,750,800].
Alternatively, we could keep the number of dynodes fixed and modify the potential applied to the
dynodes. Of course, after making this relatively simple simulation work, we could make modifications
to make it more sophisticated. What if 8 photons are directed towards the photocathode, but they arrive
at slightly different times. What does the current pulse at the anode look like? That's not a problem
that we'll tackle here, but it does demonstrate the versitility of the Monte Carlo method. Warning: This
| block of code took just under two hours to complete on my laptop.

> restart,

with(stats) :

with(plots) :

with(Statistics) :

with(StringTools) :

X := x—stats[random, uniform[0, 1]](1) :

Use X() to generate random numbers uniformly distributed between [0, 1]

W :="W': # Clear any previous use of L #
Y := y—stats| random, poisson[u]](1) :
Will use Poisson distributed nos. to determine the number of secondary electrons
produced at a dynode #
QOF = 0.23 : # Set the quantum effieicency of the photocathode #
maxi = 10e3 : # Set the number of Monte Carlo iterations #
dynode = [0, 150, 300, 450, 600, 750, 8507 :
Set the number of dynodes and their voltages
eventsList := NULL :
enventsList will keep track of how many of the maxi photon trials produced an electron
shower at the anode of the PMT #
numPhotons = [1,2,4, 8] :
Will run the Monte Carlo simulation maxi times for 1 incoming photon, then 2 incoming
photons, ... #
FormatTime ("%H:%M");
Print the time (hours and minutes) that the simulation was started # °
for m from 1 to nops(numPhotons) do:
This loop runs the simulation first with 1 incoming photon, then with 2 incoming photons,
o H#
dist == NULL :
The dist list will keep track of how many electrons where detected at the PMT anode for
trials in which there was at least on photoelectron generated at the photocathode #
for i from 1 to maxi do:
This loop runs the Monte Carlo simulation maxi times (10,000 in this case)
pe = 0: # Set the number of photoelectrons to be zero #
for k from 1 to numPhotons[m] do:
This loop individually steps through each of the photons incident on the photocathode
if X() < QF then:
Generate a rondom number between [0,1]. Compare X() to the photocathode quantum
efficiency #
pe = pe + 1 : # If true, then a photoelectron is produced. Increment pe by 1 #
end if : # end if #
end do: # end the incoming photon loop #
if pe > 0 then:
If there are photoelectrons, then do something. If there are no photoelectrons then do
nothing #
electrons := pe :
Set the initial number of electrons in the PMT to be equal to the number of photoelectrons
generated at the photocathode #
for j from 1 to nops(dynode) — 1 do:
This loop will examine the secondary electrons produced at each of the dynodes
dynode[j + 1]- dynode[j]
20 '
Mean no. of electrons generated at a dynode determined from the no. of incoming
electrons and the energy of the incoming electrons. One electron accelerated through 20 V
will on average produce one electron #
electrons = electrons + Y ();
The number of electrons leaving the dynode equal to the no. of incomming electrons plus
the number generated determined by the Poisson distributed random number #
end do: # end the dynode loop #
dist = dist, electrons :

W := electrons-

Add the total number of electrons detected at the anode for this trial to the dist list
end if: # end if #

end do: # end the I to maxi loop, i.e. the main Monte Carlo loop #
dist == [dist] :
build the final dist list -- just putting square brackets around all of the numbers
print(numPhotons[m], evalf(M
maxi

This sequency of code can take a long time to complete. Generate some intermediate
output to keep track of progress and the amount of time elapsed #

numPhotons[m], evalf(_nops(dist))

), Mean (dist), FormatTime ("%H:%M")) ;

eventsList := eventsList,

maxi
Build eventsList. Determines what fraction of the maxi trials actually produced electrons
at the PMT anode #
histPlot == Histogram dist, frequencyscale = absolute, binwidth = 2e4, axes = boxed, view
=[0..2e6, 0..5001], labels = [typeset("electrons"), typeset("distribution") |, labeldirections
= ["horizontal", "vertical"], symbol = circle, symbolsize = 20, thickness = 2, tickmarks
=8, 81, colour = blue , axesfont= [Times, 12, labelfont = [Times, 14], axis = [gridlines
= [thickness=21]]) :
Plot a histogram of the distribution of the number of electrons collected at the anode
print(display(histPlot)); # Display the histogram as an intermediate output #
binData = TallyInto(dist, [0 ..2e6], bins =100) :
Use Talleylnto to build customized bins from the dist list
counts := [seq(rhs(binData[i]),i=1 ..nops(binData))] :
Extract the bin counts generated by Tallylnto
centres = [seq(1e4 +2e4-i,i=0..nops(binData) — 1)] :# Make a list of the bin centres #
logPlot := logplot centres, counts, view=[0..2e6, 0.5 ..500], style = point, axes = boxed,
labels = [#ypeset ("electrons"), typeset("distribution")], labeldirections = ["horizontal",
"vertical"], symbol = circle, symbolsize = 15, thickness = 2, tickmarks = [8, 8], colour
=blue , axesfont= [Times, 12, labelfont = [Times, 14, axis = [gridlines = [thickness
=211 :
Make a semi-log plot of the distribution histogram. The log scale will highlight the
differences between the distributions for different numbers of incoming photons #
print(display(logPlot)); # Display the semi-log plot as an intermediate output #
end do: # end the loop over the number of incoming photons #
eventsList := [eventsList]; # display the enventsList data #
"00:35"

1, 0.2303000000, 2.668248289 105, "00:43"

distribution

500

400+

0%}
S
<

(\®]
S
<

100

0 5.% 10°

1. x 106
electrons

1.5 x 10°

2.x]1f

500
iy
(X
(%)
1004
%
5015
g in
05 G
2 © @
2 104°
o]
5
[
()]
(I
e s
0.5
0 5.x100 1.x10° 15x10® 2.x10°

electrons
2, 0.4163000000, 3.008111307 10°, "00:59"

distribution

500

400+

0%}
S
<

(\®]
S
<

100

5.% 10°

1. x 106
electrons

1.5 x 10°

2.x]1f

distribution

500
%@
ol %
o 0
0
100 e
504 K
° 5
[L%G
i
10
a []
[
5 oo
.
I
o i
1 -
0.5
0 5.x100 1.x10° 15x10® 2.x10°
electrons

4, 0.6510000000, 3.779752266 10>, "01:27"

distribution

500

400+

0%}
S
<

(\®]
S
<

100

5.% 10°

1. x 106
electrons

1.5 x 10°

2.x]1f

distribution

500 .I
DG
o |
100 5
[
501 E
(]
o @y
o s
10 5
'3
[
5 o
[e
O andD O O
1 o
0.5
0 5.x100 1.x10° 15x10® 2.x10°
electrons

8, 0.8771000000, 5.640644114 10°, "04:20"

distribution

500

400+

0%}
S
<

(\®]
S
<

100

5.% 10°

1. x 106
electrons

1.5 x 10°

2.x]1f

500
[0
[
%%@m
o 00
100 @@b
A
5015 S
e}
5 ° &io
45 &
O
%,
2 1042
S o’ o
5 O I
[e
i o o
o O a0
14& OO O
0.5
0 5.x100 1.x10° 15x10® 2.x10°
electrons

eventsList:= [[1, 0.2303000000], [2, 0.4163000000], [4, 0.6510000000], [8, 0.8771000000]] “
| >

